Search results for " 47A07"

showing 2 items of 2 documents

Sesquilinear forms associated to sequences on Hilbert spaces

2019

The possibility of defining sesquilinear forms starting from one or two sequences of elements of a Hilbert space is investigated. One can associate operators to these forms and in particular look for conditions to apply representation theorems of sesquilinear forms, such as Kato's theorems. The associated operators correspond to classical frame operators or weakly-defined multipliers in the bounded context. In general some properties of them, such as the invertibility and the resolvent set, are related to properties of the sesquilinear forms. As an upshot of this approach new features of sequences (or pairs of sequences) which are semi-frames (or reproducing pairs) are obtained.

Semi-framePure mathematicsGeneral MathematicsContext (language use)42C15 47A07 47A05 46C0501 natural sciencesBessel sequencesymbols.namesakeSettore MAT/05 - Analisi MatematicaRepresentation theoremFOS: MathematicsFrame (artificial intelligence)Frame0101 mathematics0105 earth and related environmental sciencesMathematicsResolvent set010505 oceanography010102 general mathematicsAssociated operatorRepresentation (systemics)Hilbert spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisBounded functionsymbolsSesquilinear forms
researchProduct

Maximal Operators with Respect to the Numerical Range

2018

Let $\mathfrak{n}$ be a nonempty, proper, convex subset of $\mathbb{C}$. The $\mathfrak{n}$-maximal operators are defined as the operators having numerical ranges in $\mathfrak{n}$ and are maximal with this property. Typical examples of these are the maximal symmetric (or accretive or dissipative) operators, the associated to some sesquilinear forms (for instance, to closed sectorial forms), and the generators of some strongly continuous semi-groups of bounded operators. In this paper the $\mathfrak{n}$-maximal operators are studied and some characterizations of these in terms of the resolvent set are given.

Strongly continuous semi-groupsPure mathematicsCayley transformSesquilinear form01 natural sciencesSettore MAT/05 - Analisi MatematicaMaximal operator0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics::Representation TheoryNumerical rangeMathematics47A20 47A12 47B44 47A07Resolvent setApplied Mathematics010102 general mathematicsRegular polygonOperator theoryFunctional Analysis (math.FA)Mathematics - Functional AnalysisComputational MathematicsComputational Theory and MathematicsBounded functionDissipative systemSectorStrip010307 mathematical physicsNumerical rangeComplex Analysis and Operator Theory
researchProduct